healthprocessai/
│
├── 📄 README.md # Main project documentation
├── 📄 setup.py # Python package configuration
├── 📄 requirements.txt # Python dependencies
├── 📄 requirements-dev.txt # Development dependencies
├── 📄 requirements.R # R dependencies installer
├── 📄 environment.yml # Conda environment configuration
├── 📄 .gitignore # Git ignore rules
├── 📄 LICENSE # Project license
│
├── 📂 core/ # Core modules
│ ├── step1_data_loader.py # Data loading and preparation
│ ├── step2_process_mining.py # Process discovery algorithms
│ ├── step3_llm_integration.py # LLM/AI integration
│ ├── step4_advanced_analytics.py # Advanced analytics
│ └── report_generator.py # Report generation (MD/PDF)
│
├── 📂 examples/ # Example implementations
│ ├── complete_pipeline_example.py # End-to-end pipeline
│ ├── example_patient_flow.py # Patient flow analysis
│ ├── example_physionet_to_infection.py # Infection progression
│ ├── example_physionet_to_organ.py # Organ failure progression
│ └── example_transform_raw_to_eventlog.py # Data transformation
│
├── 📂 tests/ # Test suites
│ ├── test_suite.py # Comprehensive test suite
│ ├── test_step1_data_loader.py # Data loader tests
│ ├── test_process_mining.py # Process mining tests
│ └── test_integration.py # Integration tests
│
├── 📂 notebooks/ # Jupyter notebooks
│ ├── HealthProcessAI_Python_Colab.ipynb # Python Google Colab
│ ├── HealthProcessAI_R_Colab.ipynb # R Google Colab
│ ├── Tutorial_01_Getting_Started.ipynb # Tutorial notebook
│ └── Tutorial_02_Advanced_Analysis.ipynb # Advanced tutorial
│
├── 📂 data/ # Data files
│ ├── sepsisAgregated_Infection.csv # Infection progression data
│ ├── sepsisAgregated_Organ.csv # Organ failure data
│ ├── study1_matrix_*.csv # Study 1 matrices
│ ├── study2_matrix_*.csv # Study 2 matrices
│ └── sample/ # Sample datasets
│ └── sample_event_log.csv # Small sample for testing
│
├── 📂 docs/ # Documentation
│ ├── TUTORIAL.md # Comprehensive tutorial
│ ├── CLAUDE.md # Claude AI guidance
│ ├── SETUP_GUIDE.md # Installation guide
│ ├── HEALTH_CHECK.md # Project health check
│ ├── API_REFERENCE.md # API documentation
│ └── CONTRIBUTING.md # Contribution guidelines
│
├── 📂 resources/ # Resources and templates
│ ├── prompts/ # LLM prompt templates
│ │ ├── prompt_infection.txt # Infection analysis prompt
│ │ ├── prompt_organ.txt # Organ failure prompt
│ │ ├── prompt_kidney.txt # Kidney disease prompt
│ │ └── prompt_kidney_2.txt # Alternative kidney prompt
│ └── templates/ # Report templates
│ ├── report_template.md # Markdown template
│ └── report_template.html # HTML template
│
├── 📂 reports/ # Generated reports (gitignored)
│ ├── markdown/ # Markdown reports
│ ├── pdf/ # PDF reports
│ ├── html/ # HTML reports
│ └── data/ # Raw data exports
│
├── 📂 website/ # Project website
│ ├── index.html # Main website
│ ├── css/ # Stylesheets
│ ├── js/ # JavaScript
│ └── assets/ # Images and media
│
├── 📂 src/ # Package source
│ └── healthprocessai/ # Python package
│ ├── __init__.py # Package initialization
│ ├── clinical/ # Clinical modules
│ ├── epidemiology/ # Epidemiology modules
│ ├── disease_progression/ # Disease progression
│ └── utils/ # Utility functions
│
├── 📂 R/ # R implementation
│ ├── openRouter.R # Main R script
│ ├── functions/ # R functions
│ └── Reports/ # R-generated reports
│ ├── Case I - Infection/
│ ├── Case II - Organ Damage/
│ ├── Case III - Glomerular Filtration Rate/
│ └── Case IV - Kidney Disease Progression/
│
├── 📂 config/ # Configuration files
│ ├── settings.json # Application settings
│ ├── models.json # LLM model configurations
│ └── logging.conf # Logging configuration
│
├── 📂 legacy_original/ # Original implementations (reference only)
│ ├── Python/ # Original monolithic Python implementation
│ ├── R/ # Original R implementation with reports
│ └── README.md # Explanation of legacy contents
│
└── 📂 .github/ # GitHub specific
├── workflows/ # GitHub Actions
│ ├── tests.yml # Automated testing
│ └── docs.yml # Documentation build
└── ISSUE_TEMPLATE/ # Issue templates
core/)examples/)data/)docs/)reports/)Generated reports are organized by format:
markdown/: Human-readable Markdown reportspdf/: Professional PDF reports for stakeholdershtml/: Interactive HTML reportsdata/: JSON exports of analysis results# Using Conda (recommended)
conda env create -f environment.yml
conda activate healthprocessai
# Using pip
pip install -r requirements.txt
# For development
pip install -r requirements-dev.txt
Open notebooks/HealthProcessAI_Python_Colab.ipynb in Google Colab for instant access.
core/step1_data_loader.pycore/step2_process_mining.pycore/step3_llm_integration.pycore/step4_advanced_analytics.pycore/report_generator.pyreports/markdown/, reports/pdf/reports/data/logs/ (if logging enabled)tmp/ (cleaned automatically)Developed at SMAILE (Stockholm Medical Artificial Intelligence and Learning Environments), Karolinska Institutet