healthprocessai

πŸ”„ Python vs R: Detailed Comparison for Process Mining

Executive Summary

This document provides a comprehensive comparison between Python (PM4PY) and R (bupaR) implementations for process mining in healthcare contexts, helping you choose the right tool for your specific needs.

Authors:

Developed at SMAILE, Karolinska Institutet

πŸ“Š Quick Decision Matrix

Choose Python if you need: Choose R if you need:
βœ… Large-scale data processing (>1M events) βœ… Interactive visualizations
βœ… Production deployment βœ… Statistical analysis integration
βœ… Deep learning integration βœ… Quick prototyping
βœ… 64-bit precision βœ… Familiar tidyverse workflow
βœ… API development βœ… RMarkdown reporting
βœ… Performance optimization βœ… Shiny dashboards

πŸ—οΈ Architecture & Implementation

Python (PM4PY)

# Architecture: Object-oriented
class ProcessMiner:
    def __init__(self):
        self.event_log = None
        self.dfg = None
    
    def discover_process(self, data):
        self.event_log = pm4py.convert_to_event_log(data)
        self.dfg = pm4py.discover_dfg(self.event_log)
        return self.dfg

Characteristics:

R (bupaR)

# Architecture: Functional/Pipeline
event_log <- data %>%
  eventlog(case_id = "case",
           activity_id = "activity",
           timestamp = "timestamp") %>%
  filter_activity_frequency(percentage = 0.8) %>%
  process_map()

Characteristics:


πŸ’Ύ Data Handling & Memory Management

Data Size Limits

Aspect Python R Notes
Max Events ~10M+ ~1-2M Python handles larger datasets
Max Cases ~1M+ ~100K R may struggle with many cases
Memory Usage Efficient Higher R creates more copies
64-bit Support Full Partial Python better for precision
Streaming Yes Limited Python can process chunks

Memory Comparison Example

# Python - Memory efficient
import pandas as pd
# Process in chunks
for chunk in pd.read_csv('large_file.csv', chunksize=10000):
    process_chunk(chunk)
# R - Loads entire file
library(readr)
# Must load all data
data <- read_csv('large_file.csv')
# Creates copy for each operation
processed <- data %>% 
  mutate(...) %>%  # Copy 1
  filter(...) %>%  # Copy 2
  arrange(...)      # Copy 3

⚑ Performance Considerations

Theoretical Performance Expectations

Note: The following comparisons are based on general characteristics of the underlying libraries and languages, not empirical benchmarks on this specific implementation.

Aspect Python (PM4PY) R (bupaR) Notes
Large Datasets Generally better May struggle Python’s memory model typically handles large data more efficiently
Iterative Processing Efficient Less efficient R’s copy-on-modify can impact performance
Visualization Good static plots Excellent interactive R/Shiny excels at interactive dashboards
Parallel Processing Good support Good support Both support parallelization

Memory Management Differences

Characteristic Python R
Memory Model Reference-based Copy-on-modify
Large Data Handling Can process in chunks Typically loads all data
Garbage Collection Automatic Automatic but different strategy

Important: Actual performance will vary based on:

For production deployments, we recommend benchmarking with your specific datasets and workflows.

Disclaimer: Performance comparisons in this document are based on general characteristics of the languages and libraries, not empirical testing of this specific implementation. Actual performance may vary significantly based on your use case.


πŸ”§ Process Mining Capabilities

Algorithm Support

Algorithm Python (PM4PY) R (bupaR)
DFG Discovery βœ… Full βœ… Full
Heuristics Miner βœ… Full βœ… Limited
Alpha Algorithm βœ… Full ❌ No
Inductive Miner βœ… Full βœ… Partial
Petri Nets βœ… Full ❌ No
BPMN βœ… Full ❌ No
Conformance Checking βœ… Full βœ… Basic
Predictive Monitoring βœ… Full ❌ No

πŸ” Detailed Algorithm Comparison

1. Discovery Algorithms

Python (PM4PY) Mining Algorithms
import pm4py

# 1. Directly-Follows Graph (DFG) - Most Common
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)

# 2. Heuristics Miner - Handles Noise Well
heu_net = pm4py.discover_heuristics_net(event_log)
petri_net, initial_marking, final_marking = pm4py.convert_to_petri_net(heu_net)

# 3. Alpha Algorithm - Classical Academic Algorithm
alpha_petri_net, initial_marking, final_marking = pm4py.discover_petri_net_alpha(event_log)

# 4. Alpha+ Algorithm - Extended Alpha
alpha_plus_net = pm4py.discover_petri_net_alpha_plus(event_log)

# 5. Inductive Miner - Guarantees Sound Models
tree = pm4py.discover_process_tree_inductive(event_log)
petri_net, initial_marking, final_marking = pm4py.convert_to_petri_net(tree)

# 6. Inductive Miner - Infrequent (IMf)
tree_imf = pm4py.discover_process_tree_inductive(event_log, 
                                                noise_threshold=0.2)

# 7. Inductive Miner - Direct (IMd)  
tree_imd = pm4py.discover_process_tree_inductive(event_log,
                                                multi_processing=True)

# 8. ILP Miner - Integer Linear Programming
ilp_net, ilp_im, ilp_fm = pm4py.discover_petri_net_ilp(event_log)

# 9. Fuzzy Miner - For Spaghetti Processes
fuzzy_model = pm4py.discover_fuzzy_model(event_log)

# 10. Split Miner - Automated Parameters
split_net, split_im, split_fm = pm4py.discover_petri_net_split_miner(event_log)
R (bupaR/processmineR) Mining Algorithms
library(bupaR)
library(processmineR)
library(heuristicsmineR)

# 1. Directly-Follows Graph (DFG)
process_map <- event_log %>% 
  process_map(type = frequency("absolute"))

# 2. Precedence Matrix
precedence <- event_log %>% 
  precedence_matrix(type = "absolute")

# 3. Heuristics Miner (Limited)
library(heuristicsmineR)
heuristics_model <- heuristics_miner(event_log,
                                   dependency_threshold = 0.9)

# 4. Causal Net Discovery
causal_net <- event_log %>%
  causal_graph(threshold = 0.8)

# 5. Fuzzy Miner Approach
fuzzy_map <- event_log %>%
  filter_activity_frequency(percentage = 0.95) %>%
  process_map(type = performance(median, "hours"))

# 6. Social Network Mining
resource_map <- event_log %>%
  resource_map(type = handover_of_work())

# 7. Dotted Chart Analysis  
dotted_chart(event_log)

# 8. Process Animation
animate_process(event_log)

2. Conformance Checking Algorithms

Python (PM4PY) Conformance Methods
# 1. Token-Based Replay
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay

replayed_traces = token_replay.apply(event_log, petri_net, 
                                   initial_marking, final_marking)

# 2. Alignments - Most Precise
from pm4py.algo.conformance.alignments import algorithm as alignments

aligned_traces = alignments.apply_log(event_log, petri_net,
                                    initial_marking, final_marking)

# 3. Multi-threaded Alignments
aligned_traces_mt = alignments.apply_log(event_log, petri_net,
                                       initial_marking, final_marking,
                                       parameters={"multiprocessing": True})

# 4. Decomposed Alignments - For Large Models
from pm4py.algo.conformance.decomp_alignments import algorithm as decomp_align

decomp_aligned = decomp_align.apply(event_log, petri_net,
                                  initial_marking, final_marking)

# 5. Anti-Alignments - Find Deviations
from pm4py.algo.conformance.antialignments import algorithm as anti_align

anti_aligned = anti_align.apply(event_log, petri_net,
                              initial_marking, final_marking)

# 6. Footprints Conformance
from pm4py.algo.conformance.footprints import algorithm as footprints_conf

footprints_conf_result = footprints_conf.apply(event_log, petri_net,
                                              initial_marking, final_marking)
R (bupaR) Conformance Methods
# 1. Fitness Checking (Basic)
fitness_measures <- event_log %>%
  fitness_token_replay(petri_net)

# 2. Precision Checking
precision_measures <- event_log %>%
  precision_alignment(petri_net)

# 3. Conformance Dashboard
conformance_dashboard(event_log, reference_model)

# 4. Trace Alignment (Limited)
aligned_traces <- event_log %>%
  trace_alignment(reference_model)

3. Performance Analysis Algorithms

Python (PM4PY) Performance Techniques
# 1. Case Duration Analysis
case_durations = pm4py.get_all_case_durations(event_log, "hours")

# 2. Activity Duration Analysis  
activity_durations = pm4py.get_activity_durations(event_log)

# 3. Waiting Time Analysis
waiting_times = pm4py.get_waiting_time(event_log)

# 4. Service Time Analysis
service_times = pm4py.get_service_time(event_log)

# 5. Cycle Time Analysis
cycle_times = pm4py.get_cycle_time(event_log)

# 6. Performance DFG
perf_dfg, sa, ea = pm4py.discover_performance_dfg(event_log)

# 7. Sojourn Time Analysis
from pm4py.statistics.sojourn_time.log import get as soj_time_get
sojourn_times = soj_time_get.apply(event_log)

# 8. Resource Performance
resource_activities = pm4py.get_resource_activity_workload(event_log)
R (bupaR) Performance Techniques
# 1. Throughput Time Analysis
throughput <- event_log %>%
  throughput_time(level = "log", 
                 units = "hours")

# 2. Processing Time Analysis  
processing_time <- event_log %>%
  processing_time(level = "activity")

# 3. Idle Time Analysis
idle_time <- event_log %>%
  idle_time(level = "case")

# 4. Resource Utilization
resource_util <- event_log %>%
  resource_frequency(level = "resource")

# 5. Activity Frequency Analysis
activity_freq <- event_log %>%
  activity_frequency(level = "activity")

# 6. Trace Coverage
trace_coverage <- event_log %>%
  trace_coverage(level = "trace")

# 7. Performance Dashboard
performance_dashboard(event_log)

4. Healthcare-Specific Mining Approaches

Python (PM4PY) Healthcare Extensions
# 1. Clinical Pathway Mining
def discover_clinical_pathway(event_log, outcome_attribute="SepsisLabel"):
    # Separate by outcome
    positive_cases = pm4py.filter_event_attribute_values(
        event_log, outcome_attribute, [1], retain=True)
    negative_cases = pm4py.filter_event_attribute_values(
        event_log, outcome_attribute, [0], retain=True)
    
    # Discover pathways for each outcome
    pos_dfg, pos_sa, pos_ea = pm4py.discover_dfg(positive_cases)
    neg_dfg, neg_sa, neg_ea = pm4py.discover_dfg(negative_cases)
    
    return {
        'positive_outcome': (pos_dfg, pos_sa, pos_ea),
        'negative_outcome': (neg_dfg, neg_sa, neg_ea)
    }

# 2. Treatment Effect Mining
def analyze_treatment_effects(event_log, treatment_activity, outcome_metric):
    treated_cases = pm4py.filter_event_attribute_values(
        event_log, "concept:name", [treatment_activity], retain=True)
    control_cases = pm4py.filter_event_attribute_values(
        event_log, "concept:name", [treatment_activity], retain=False)
    
    treated_outcomes = pm4py.get_all_case_durations(treated_cases)
    control_outcomes = pm4py.get_all_case_durations(control_cases)
    
    return {
        'treated_mean': treated_outcomes.mean(),
        'control_mean': control_outcomes.mean(),
        'effect_size': treated_outcomes.mean() - control_outcomes.mean()
    }

# 3. Risk Stratification Mining
def risk_stratification_mining(event_log, risk_factors):
    stratified_results = {}
    
    for risk_level in ['low', 'medium', 'high']:
        risk_cases = filter_by_risk_level(event_log, risk_factors, risk_level)
        dfg, sa, ea = pm4py.discover_dfg(risk_cases)
        stratified_results[risk_level] = {
            'dfg': dfg,
            'case_count': len(risk_cases),
            'avg_duration': pm4py.get_all_case_durations(risk_cases).mean()
        }
    
    return stratified_results
R (bupaR) Healthcare Extensions
# 1. Clinical Pathway Analysis
analyze_clinical_pathways <- function(event_log, outcome_var) {
  positive_outcomes <- event_log %>%
    filter(!!sym(outcome_var) == 1) %>%
    process_map(type = frequency("relative"))
  
  negative_outcomes <- event_log %>%
    filter(!!sym(outcome_var) == 0) %>%
    process_map(type = frequency("relative"))
  
  list(
    positive = positive_outcomes,
    negative = negative_outcomes
  )
}

# 2. Care Pathway Compliance
pathway_compliance <- function(event_log, reference_pathway) {
  event_log %>%
    trace_explorer() %>%
    mutate(compliance = case_when(
      trace_pattern %in% reference_pathway ~ "Compliant",
      TRUE ~ "Non-compliant"
    )) %>%
    group_by(compliance) %>%
    summarise(
      n_cases = n(),
      percentage = n() / nrow(.) * 100
    )
}

# 3. Resource Handover Analysis  
resource_handover_analysis <- function(event_log) {
  event_log %>%
    resource_map(type = handover_of_work()) %>%
    render_resource_map()
}

# 4. Temporal Pattern Analysis
temporal_patterns <- function(event_log) {
  event_log %>%
    dotted_chart(x = "absolute",
                y = "duration") %>%
    plot()
}

5. Specialized Healthcare Miners

Python Extensions for Healthcare
# 1. Sepsis Progression Miner
class SepsisProgressionMiner:
    def __init__(self, event_log):
        self.event_log = event_log
    
    def discover_sepsis_patterns(self):
        # Filter sepsis cases
        sepsis_cases = pm4py.filter_event_attribute_values(
            self.event_log, "SepsisLabel", [1], retain=True)
        
        # Time-based analysis
        time_patterns = self.analyze_temporal_patterns(sepsis_cases)
        
        # Clinical milestone detection
        milestones = self.detect_clinical_milestones(sepsis_cases)
        
        return {
            'temporal_patterns': time_patterns,
            'clinical_milestones': milestones
        }

# 2. Readmission Pattern Miner
class ReadmissionMiner:
    def discover_readmission_patterns(self, event_log, time_window_days=30):
        readmission_patterns = {}
        # Implementation for readmission analysis
        return readmission_patterns

# 3. Medication Adherence Miner  
class MedicationAdherenceMiner:
    def analyze_adherence_patterns(self, event_log, medication_events):
        adherence_metrics = {}
        # Implementation for medication adherence
        return adherence_metrics
R Extensions for Healthcare
# 1. Clinical Protocol Miner
library(clinicaltrialr)
library(survival)

clinical_protocol_miner <- function(event_log, protocol_definition) {
  protocol_adherence <- event_log %>%
    mutate(
      protocol_step = map_protocol_step(activity_id, protocol_definition),
      adherence = check_protocol_adherence(protocol_step)
    ) %>%
    group_by(case_id) %>%
    summarise(
      adherence_rate = mean(adherence, na.rm = TRUE),
      protocol_completion = max(protocol_step, na.rm = TRUE)
    )
  
  return(protocol_adherence)
}

# 2. Survival Analysis Integration
survival_process_mining <- function(event_log, time_to_event, status) {
  # Combine process mining with survival analysis
  pathway_survival <- event_log %>%
    group_by(trace_id) %>%
    summarise(
      pathway_pattern = paste(activity_id, collapse = "->"),
      time_to_event = first(!!sym(time_to_event)),
      status = first(!!sym(status))
    ) %>%
    survfit(Surv(time_to_event, status) ~ pathway_pattern, data = .)
  
  return(pathway_survival)
}

# 3. Quality Indicator Mining
quality_indicator_mining <- function(event_log, quality_measures) {
  quality_analysis <- event_log %>%
    group_by(case_id) %>%
    summarise(
      across(all_of(quality_measures), 
             list(mean = mean, min = min, max = max), 
             na.rm = TRUE)
    ) %>%
    pivot_longer(cols = -case_id, 
                names_to = "measure", 
                values_to = "value")
  
  return(quality_analysis)
}

πŸ“š Complete Library Ecosystem Comparison

Python Process Mining Ecosystem

Library Focus Algorithms Healthcare Suitability
PM4PY Comprehensive PM DFG, Alpha, Inductive, Heuristics, ILP ⭐⭐⭐⭐⭐ Complete
ProM-Lite Academic research Research algorithms ⭐⭐⭐ Research focus
PM4Py-GPU GPU acceleration High-performance mining ⭐⭐⭐⭐ Large datasets
ProcessLens Visualization Interactive exploration ⭐⭐⭐ Limited healthcare
Processminer Basic mining Simple algorithms ⭐⭐ Basic functionality
Celonis Enterprise Commercial algorithms ⭐⭐⭐⭐ Enterprise healthcare

R Process Mining Ecosystem

Library Focus Algorithms Healthcare Suitability
bupaR Business process analysis DFG, Performance, Social network ⭐⭐⭐⭐⭐ Excellent
processmineR Process discovery Basic discovery algorithms ⭐⭐⭐ Good
heuristicsmineR Heuristics mining Heuristics nets ⭐⭐⭐ Research focus
eventdataR Event data manipulation Data preparation ⭐⭐⭐⭐ Essential for healthcare
xesreadR XES file handling Data import/export ⭐⭐⭐ Standard compliance
processcheckR Conformance checking Constraint checking ⭐⭐⭐⭐ Clinical guidelines
processanimateR Process animation Dynamic visualization ⭐⭐⭐⭐ Patient journey
processmonitR Real-time monitoring Live dashboards ⭐⭐⭐⭐ Clinical monitoring

Specialized Healthcare Libraries

Python Healthcare PM Extensions
# 1. Healthcare Process Mining Toolkit (custom)
class HealthcarePMToolkit:
    """Extended PM4PY for healthcare applications"""
    
    def __init__(self):
        self.clinical_miners = {
            'sepsis_miner': SepsisProgressionMiner(),
            'pathway_miner': ClinicalPathwayMiner(),
            'readmission_miner': ReadmissionMiner(),
            'treatment_miner': TreatmentEffectMiner()
        }
    
    def analyze_clinical_outcomes(self, event_log, outcome_measures):
        """Analyze clinical outcomes using process mining"""
        results = {}
        
        for outcome in outcome_measures:
            miner = self.clinical_miners.get(f"{outcome}_miner")
            if miner:
                results[outcome] = miner.analyze(event_log)
        
        return results

# 2. Medical Process Discovery
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery

class MedicalProcessDiscoverer:
    """Specialized discovery for medical processes"""
    
    def discover_care_pathways(self, event_log, specialization="general"):
        """Discover care pathways by medical specialization"""
        
        # Filter by medical department/specialization
        specialized_log = self.filter_by_department(event_log, specialization)
        
        # Discover process with medical constraints
        dfg, start_activities, end_activities = dfg_discovery.apply(
            specialized_log,
            parameters={
                'min_edge_frequency': 5,  # Clinical significance threshold
                'filter_activity_frequency': 0.1  # Remove rare activities
            }
        )
        
        return {
            'care_pathway': dfg,
            'entry_points': start_activities,
            'discharge_points': end_activities,
            'clinical_metrics': self.calculate_clinical_metrics(specialized_log)
        }

# 3. Predictive Healthcare Mining
class PredictiveHealthcareMiner:
    """Predictive process monitoring for healthcare"""
    
    def predict_patient_outcome(self, partial_trace, outcome_models):
        """Predict patient outcomes from partial traces"""
        
        features = self.extract_clinical_features(partial_trace)
        predictions = {}
        
        for outcome, model in outcome_models.items():
            predictions[outcome] = {
                'probability': model.predict_proba(features)[0][1],
                'risk_level': self.categorize_risk(model.predict_proba(features)[0][1]),
                'interventions': self.recommend_interventions(outcome, features)
            }
        
        return predictions
R Healthcare PM Extensions
# 1. Clinical bupaR Extensions
library(bupaR)
library(dplyr)
library(survival)

# Clinical pathway analysis extensions
clinical_bupaR <- function() {
  
  # Enhanced activity analysis for clinical activities
  clinical_activity_frequency <- function(event_log, clinical_categories = NULL) {
    if (!is.null(clinical_categories)) {
      event_log <- event_log %>%
        mutate(clinical_category = map_clinical_category(activity_id, clinical_categories))
    }
    
    event_log %>%
      activity_frequency(level = "activity") %>%
      arrange(desc(absolute_frequency)) %>%
      mutate(
        clinical_significance = case_when(
          relative_frequency > 0.8 ~ "Core pathway",
          relative_frequency > 0.5 ~ "Common pathway", 
          relative_frequency > 0.2 ~ "Alternative pathway",
          TRUE ~ "Rare pathway"
        )
      )
  }
  
  # Resource utilization for healthcare staff
  healthcare_resource_analysis <- function(event_log) {
    event_log %>%
      resource_frequency(level = "resource") %>%
      mutate(
        workload_category = case_when(
          relative_frequency > 0.4 ~ "High workload",
          relative_frequency > 0.2 ~ "Moderate workload",
          TRUE ~ "Light workload"
        )
      ) %>%
      resource_map(type = handover_of_work())
  }
  
  # Temporal analysis for clinical timing
  clinical_time_analysis <- function(event_log) {
    list(
      throughput = event_log %>% throughput_time(level = "log"),
      processing = event_log %>% processing_time(level = "activity"),
      waiting = event_log %>% idle_time(level = "case"),
      timing_compliance = event_log %>% 
        filter_processing_time(interval = c(0, 24), units = "hours") %>%
        nrow() / nrow(event_log)
    )
  }
  
  return(list(
    activity_analysis = clinical_activity_frequency,
    resource_analysis = healthcare_resource_analysis,
    time_analysis = clinical_time_analysis
  ))
}

# 2. Outcome-based Process Mining
outcome_based_pm <- function(event_log, outcome_variable) {
  
  # Separate by outcomes
  positive_outcomes <- event_log %>%
    filter(!!sym(outcome_variable) == 1)
  
  negative_outcomes <- event_log %>%
    filter(!!sym(outcome_variable) == 0)
  
  # Comparative analysis
  comparison_results <- list(
    positive_pathway = positive_outcomes %>% process_map(),
    negative_pathway = negative_outcomes %>% process_map(),
    
    # Performance comparison
    positive_performance = positive_outcomes %>% 
      throughput_time(level = "log") %>%
      summary(),
    
    negative_performance = negative_outcomes %>%
      throughput_time(level = "log") %>%
      summary(),
    
    # Activity differences
    activity_differences = bind_rows(
      positive_outcomes %>% activity_frequency() %>% mutate(outcome = "positive"),
      negative_outcomes %>% activity_frequency() %>% mutate(outcome = "negative")
    ) %>%
    pivot_wider(names_from = outcome, values_from = relative_frequency) %>%
    mutate(difference = positive - negative) %>%
    arrange(desc(abs(difference)))
  )
  
  return(comparison_results)
}

# 3. Quality Indicators Integration
quality_pm_integration <- function(event_log, quality_indicators) {
  
  # Map quality indicators to process events
  quality_enhanced_log <- event_log %>%
    left_join(quality_indicators, by = "case_id") %>%
    mutate(
      quality_category = case_when(
        quality_score >= 0.8 ~ "High quality",
        quality_score >= 0.6 ~ "Moderate quality",
        TRUE ~ "Low quality"
      )
    )
  
  # Quality-stratified process analysis
  quality_analysis <- quality_enhanced_log %>%
    group_by(quality_category) %>%
    do(
      process_map = process_map(.),
      performance = throughput_time(., level = "log"),
      resource_usage = resource_frequency(., level = "resource")
    )
  
  return(quality_analysis)
}

Complete Mining Algorithm Coverage

Process Discovery Algorithms by Platform
Algorithm Type Python (PM4PY) R (bupaR) Clinical Use Case
DFG βœ… Full support βœ… Full support Basic pathway discovery
Heuristics Miner βœ… Complete implementation ⚠️ Limited (heuristicsmineR) Noisy clinical data
Alpha Algorithm βœ… Alpha, Alpha+, Alpha++ ❌ Not available Academic/research use
Inductive Miner βœ… IM, IMf, IMd, IMc ⚠️ Basic implementation Guaranteed sound models
ILP Miner βœ… Full implementation ❌ Not available Complex clinical processes
Split Miner βœ… Available ❌ Not available Automated parameter tuning
Fuzzy Miner βœ… Available ⚠️ Approximated via filtering Spaghetti processes
Declare Miner βœ… Available ❌ Not available Constraint-based mining
Transition Systems βœ… Full support ❌ Not available State-based modeling
Conformance Checking Methods
Method Python (PM4PY) R (bupaR) Healthcare Application
Token Replay βœ… Full implementation ⚠️ Basic via processcheckR Guideline compliance
Alignments βœ… Cost-based alignments ❌ Not available Precise deviation analysis
Multi-perspective βœ… Data + control flow ❌ Limited Complex clinical rules
Decomposed βœ… Large model support ❌ Not available Scalable conformance
Anti-alignments βœ… Available ❌ Not available Finding model weaknesses
Footprints βœ… Available ❌ Not available Lightweight conformance

Feature Comparison

Feature Python R Winner
Process Discovery Comprehensive Good Python
Conformance Token replay, alignments Basic fitness Python
Enhancement Full support Limited Python
Social Network Yes Yes Tie
Time Analysis Good Excellent R
Resource Analysis Good Excellent R

πŸ“ˆ Visualization Capabilities

Python Visualization

# Static visualization
pm4py.view_dfg(dfg, start_activities, end_activities)

# Customization options
parameters = {
    "format": "png",
    "rankdir": "LR",
    "font_size": 12,
    "bgcolor": "white"
}
pm4py.save_vis_dfg(dfg, "process.png", parameters=parameters)

Pros:

Cons:

R Visualization

# Interactive visualization
process_map(event_log, 
           type = frequency("relative"),
           sec = performance(median),
           rankdir = "LR") %>%
  render_process_map()

# Animated traces
animate_process(event_log)

Pros:

Cons:


πŸ”Œ Integration & Deployment

Python Integration

Aspect Support Notes
Web APIs Excellent Flask, FastAPI, Django
Databases Full All major DBs supported
Cloud Native AWS, GCP, Azure ready
Docker Easy Lightweight containers
ML/AI Seamless TensorFlow, PyTorch
Notebooks Full Jupyter, Colab

R Integration

Aspect Support Notes
Web APIs Limited Plumber, RestRserve
Databases Good DBI, odbc packages
Cloud Moderate RStudio Cloud
Docker Complex Larger images
ML/AI Good tidymodels, keras
Notebooks Full RMarkdown, RStudio

πŸ“ Code Comparison: Same Task

Task: Load data, discover process, filter, visualize

Python Implementation

import pm4py
import pandas as pd

# Load and prepare
df = pd.read_csv('sepsis.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])

# Convert to event log
event_log = pm4py.convert_to_event_log(df)

# Filter incomplete cases
filtered_log = pm4py.filter_incomplete_cases(event_log)

# Discover process
dfg, start, end = pm4py.discover_dfg(filtered_log)

# Filter infrequent paths
dfg_filtered = pm4py.filter_dfg(dfg, min_edge_frequency=10)

# Visualize
pm4py.view_dfg(dfg_filtered, start, end)

# Performance metrics
performance = pm4py.get_all_case_durations(filtered_log)
print(f"Avg duration: {performance.mean():.2f} hours")

R Implementation

library(bupaR)
library(tidyverse)

# Load and prepare
data <- read_csv('sepsis.csv') %>%
  mutate(timestamp = as.POSIXct(timestamp))

# Convert to event log
event_log <- data %>%
  eventlog(case_id = "case",
           activity_id = "activity",
           timestamp = "timestamp")

# Filter incomplete cases
filtered_log <- event_log %>%
  filter_trace_frequency(percentage = 1.0)

# Discover and filter process
process_map <- filtered_log %>%
  filter_activity_frequency(interval = c(10, NA)) %>%
  process_map(type = frequency("absolute"))

# Performance metrics
performance <- filtered_log %>%
  throughput_time("case") %>%
  summary()

print(paste("Avg duration:", mean(performance$throughput_time), "hours"))

🎯 Use Case Recommendations

Best for Python

  1. Large Hospital Systems
    • Millions of events
    • Real-time processing
    • API integration needed
  2. Research Projects
    • Novel algorithms
    • ML/AI integration
    • Reproducible pipelines
  3. Production Systems
    • 24/7 availability
    • Performance critical
    • Microservices

Best for R

  1. Clinical Studies
    • Statistical analysis
    • Publication graphics
    • RMarkdown reports
  2. Exploratory Analysis
    • Quick insights
    • Interactive exploration
    • Hypothesis testing
  3. Dashboards
    • Shiny applications
    • Real-time monitoring
    • Clinical dashboards

πŸš€ Migration Guide

Python to R

# Python: event_log = pm4py.read_xes('log.xes')
# R equivalent:
event_log <- read_xes('log.xes')

# Python: dfg = pm4py.discover_dfg(event_log)
# R equivalent:
precedence_matrix <- event_log %>% precedence_matrix()

R to Python

# R: event_log %>% filter_activity_frequency(percentage = 0.8)
# Python equivalent:
from pm4py.algo.filtering.log.attributes import attributes_filter
filtered = attributes_filter.apply_events(event_log, 
                                          min_frequency=0.8)

# R: process_map(event_log)
# Python equivalent:
dfg, start, end = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start, end)

πŸ“Š Summary Table

Criterion Python R Recommendation
Learning Curve ⭐⭐⭐ ⭐⭐⭐⭐ R easier to start
Performance ⭐⭐⭐⭐⭐ ⭐⭐⭐ Depends on use case
Scalability ⭐⭐⭐⭐⭐ ⭐⭐ Python for big data
Visualization ⭐⭐⭐ ⭐⭐⭐⭐⭐ R for interactivity
Statistics ⭐⭐⭐ ⭐⭐⭐⭐⭐ R for analysis
Production ⭐⭐⭐⭐⭐ ⭐⭐ Python for deployment
Documentation ⭐⭐⭐⭐ ⭐⭐⭐⭐ Both good
Community ⭐⭐⭐⭐ ⭐⭐⭐ Python larger

πŸ” Detailed Technical Specifications

Python (PM4PY)

Memory Model: 64-bit native
Threading: GIL (single-threaded for CPU tasks)
Parallel: multiprocessing support
Data Types:
  - Integer: int64 (unlimited precision)
  - Float: float64 (IEEE 754)
  - Timestamp: datetime64[ns]
Max Array Size: Limited by RAM
Garbage Collection: Automatic (reference counting + cyclic)
JIT Compilation: Available (Numba, PyPy)

R (bupaR)

Memory Model: Mixed 32/64-bit
Threading: Limited (some packages support)
Parallel: parallel, foreach packages
Data Types:
  - Integer: int32 (2^31-1 max)
  - Float: float64 (IEEE 754)
  - Timestamp: POSIXct/POSIXlt
Max Vector Size: 2^31-1 elements
Garbage Collection: Automatic (generational)
JIT Compilation: Limited (compiler package)

πŸ₯ Healthcare-Specific Recommendations by Use Case

Large Hospital Systems (>100K events/month)

Recommendation: Python (PM4PY) + R (bupaR) Hybrid
β”œβ”€β”€ Python: Data processing, discovery, conformance
β”œβ”€β”€ R: Statistical analysis, dashboards, reporting
└── Integration: Shared data via Parquet/CSV

Why this combination:

Clinical Research Projects

Recommendation: R (bupaR) Primary
β”œβ”€β”€ bupaR: Core process mining
β”œβ”€β”€ survival: Survival analysis integration  
β”œβ”€β”€ tidymodels: Statistical modeling
└── RMarkdown: Publication-ready reports

Why R:

Real-time Clinical Monitoring

Recommendation: Python (PM4PY) Primary
β”œβ”€β”€ PM4PY: Process discovery and monitoring
β”œβ”€β”€ FastAPI: Real-time API endpoints
β”œβ”€β”€ Redis: Caching for performance
└── Docker: Containerized deployment

Why Python:

Quality Improvement Programs

Recommendation: R (bupaR) Primary
β”œβ”€β”€ bupaR: Process analysis
β”œβ”€β”€ processanimateR: Visual storytelling
β”œβ”€β”€ Shiny: Interactive dashboards
└── plotly: Interactive visualizations

Why R:

Academic/Teaching Environments

Recommendation: Both Python and R
β”œβ”€β”€ Start with R (easier learning curve)
β”œβ”€β”€ Progress to Python (advanced techniques)
β”œβ”€β”€ Compare results between platforms
└── Teach platform selection criteria

πŸ”¬ Advanced Algorithm Selection Guide

When to Use Specific Miners

Directly-Follows Graph (DFG)

Heuristics Miner

Inductive Miner

Alpha Algorithm

ILP Miner

Conformance Checking Strategy

Token-Based Replay

# Python - Full implementation
from pm4py.algo.conformance.tokenreplay import algorithm as token_replay
replayed = token_replay.apply(event_log, petri_net, im, fm)

# Use when: Basic compliance checking, performance important
# Healthcare: Guideline adherence, protocol compliance
# R - Basic implementation  
fitness_measures <- event_log %>%
  fitness_token_replay(petri_net)

# Use when: Simple fitness calculation, integrated with bupaR workflow

Alignments

# Python - Advanced implementation
from pm4py.algo.conformance.alignments import algorithm as alignments
aligned = alignments.apply_log(event_log, petri_net, im, fm)

# Use when: Precise deviation analysis, root cause analysis
# Healthcare: Detailed clinical audit, malpractice investigation

❌ Not available in R - Use Python for advanced conformance

Performance Optimization Strategies

Python Performance Tips

# 1. Use efficient filtering
filtered_log = pm4py.filter_event_attribute_values(
    event_log, "concept:name", frequent_activities, retain=True)

# 2. Chunk processing for large datasets
for chunk in pd.read_csv('large_file.csv', chunksize=10000):
    process_chunk(chunk)

# 3. Use multiprocessing
parameters = {"multiprocessing": True, "cores": 4}
tree = pm4py.discover_process_tree_inductive(event_log, parameters=parameters)

# 4. Pre-filter noise
clean_log = pm4py.filter_variants_top_k(event_log, k=1000)

R Performance Tips

# 1. Use data.table for large datasets
library(data.table)
event_dt <- as.data.table(event_log)

# 2. Filter early and often
filtered_log <- event_log %>%
  filter_activity_frequency(percentage = 0.9) %>%
  filter_trace_frequency(percentage = 0.95)

# 3. Use parallel processing
library(parallel)
results <- mclapply(case_list, analyze_case, mc.cores = 4)

# 4. Optimize visualizations
process_map(event_log, render = FALSE) # Skip rendering for analysis

πŸŽ“ Conclusion

Choose Python (PM4PY) when:

Choose R (bupaR) when:

Migration Strategy:

  1. Start with R for learning and quick insights
  2. Add Python when performance becomes critical
  3. Develop hybrid workflows for production systems
  4. Train teams in both platforms progressively

Future-Proofing:


πŸ‘₯ Contributors

This comprehensive comparison was developed by:

This comparison is based on PM4PY 2.7+ and bupaR 0.5+ as of 2024
Developed at SMAILE (Stockholm Medical Artificial Intelligence and Learning Environments), Karolinska Institutet